
Implementing Object-Oriented Programming Concepts in
Low-Code Platforms A Case Study on Appian

Preeti Tupsakhare 1*

1Engineer Lead - Medical Benefit Management Information Technology, Elevance Health.

*Corresponding Author:
Preeti Tupsakhare, Engineer Lead - Medical Benefit Management Information Technology, Elevance Health, USA.

Received Date: 26 October, 2024; Published Date: 19 November, 2024

Citation:
Preeti T (2024) Implementing Object-Oriented Programming Concepts in Low-Code Platforms A Case Study on Appian Digit J Eng Sci
Technol 1(1): 101.

Digital Journal of Engineering Science
and Technology

Keywords:
Low-Code Platform; Object Oriented Programming Concepts; OOPS; Appian.

Abstract

In the evolving landscape of software development, low-code platforms like Appian provide rapid development environments
that democratize application creation, allowing non-technical users to build solutions with minimal coding expertise. While low-
code platforms traditionally lack native support for formal Object-Oriented Programming (OOP) paradigms, OOP principles such
as encapsulation, inheritance, polymorphism, and modularity can still be applied to enhance the modularity, reusability, and
scalability of applications. This paper explores the application of key OOP concepts in low-code environments and discusses their
potential benefits, especially in the context of long-term application maintenance, team collaboration, and enterprise scalability.

Introduction

The rapid advancement in software development has led to
the rise of low-code platforms like Appian, which empower users
with minimal technical expertise to build robust applications.
These platforms provide visual development environments
and pre-built components, accelerating the software creation
process. As businesses increasingly adopt low-code platforms
to streamline development processes, the democratization of
application development has emerged as a significant advantage,
enabling non-technical users to contribute to system design and
implementation. However, while low-code platforms offer notable
time-saving benefits, they often lack support for traditional
software engineering principles, particularly Object-Oriented
Programming (OOP). OOP, which is based on encapsulation,
inheritance, polymorphism, and modularity, has long been
recognized for enhancing software modularity, maintainability,
and scalability. In environments where application development
may scale significantly or involve large teams, the absence of
formal OOP structures can present challenges to long-term

maintenance, extensibility, and collaborative development [4].
Despite these limitations, it is possible to apply OOP principles
within low-code environments to address some of these
challenges. This paper explores how key OOP concepts can be
adapted and implemented in low-code platforms to enhance
application design. The discussion will focus on the potential
benefits of incorporating these principles to improve long-term
application maintenance, facilitate team collaboration, and
support enterprise-level scalability [4,5].

Object-Oriented Programming Concepts Overview

Encapsulation: Encapsulation is the principle of bundling
data (attributes) and the methods (functions) that operate on that
data into a single unit or class. This concept restricts direct access
to some of an object’s components, which enhances data security
by preventing unauthorized or unintended modifications. By
hiding the internal state of an object and exposing only the
necessary functionalities through public methods, encapsulation
promotes a clean separation of concerns. This separation is crucial

Case Study

Page 2/6

Citation: Preeti T (2024) Implementing Object-Oriented Programming Concepts in Low-Code Platforms A Case Study on Appian
Digit J Eng Sci Technol 1(1): 101.

Digital Journal of Engineering Science and Technology (DJEST)

for building modular applications where individual components
can be maintained or updated independently, ensuring that
changes to one part of the system have minimal impact on other
parts. In the context of low-code environments, encapsulation
can be mimicked by creating self-contained reusable components
or services that manage their own state and behaviors, which
can be invoked or modified without exposing the underlying
complexities [4].

Inheritance: Inheritance is an OOP concept where a class
(child or subclass) inherits properties and behaviors (methods)
from another class (parent or superclass). This allows for code
reuse, making it easier to build scalable and extensible systems
by defining common characteristics once in a parent class
and then reusing or overriding those characteristics in child
classes. Inheritance also supports the creation of hierarchical
class structures, allowing for more organized and manageable
code. In low-code platforms, while inheritance may not exist
in a formal sense, similar concepts can be applied by creating
reusable templates or components that can inherit and extend
functionalities from a base template, promoting consistency
across applications and reducing redundancy in code [4].

Polymorphism: Polymorphism allows objects to be treated
as instances of their parent class rather than their actual class.
This capability enables flexibility in how different objects
are used, allowing the same operation or method to behave
differently depending on the object it is applied to. For example,
a parent class Shape could have a method draw (), and each
subclass (like Circle, Square, or Triangle) could implement this
method differently. Polymorphism thus enables systems to
be more dynamic and adaptable. In low-code environments,
polymorphism can be reflected through configurable workflows
or user interfaces that adapt based on user roles or application
contexts, allowing different components to behave differently
under varying circumstances while maintaining a unified
interface [4].

Modularity: Modularity in software design refers to the
practice of breaking down a system into smaller, self-contained
components or modules that can be developed, tested, and
maintained independently. OOP inherently supports modularity
by allowing developers to define discrete classes and objects
that perform specific functions and interact with one another
through well-defined interfaces. This approach leads to more
maintainable and scalable architectures, as individual modules
can be easily modified, replaced, or extended without disrupting
the entire system. In low-code environments, modularity is
typically achieved by designing applications using building blocks
like components, workflows, and services, each serving a specific
purpose and reusable across different parts of the system [6].

Applying Oop Principals in Low-Code Platforms

Encapsulation

Encapsulation in Object-Oriented Programming (OOP) refers
to the bundling of data and methods that manipulate that data
into a single, cohesive unit, typically a class. In the context of
Appian, a low-code platform, encapsulation is achieved through
Custom Data Types (CDTs) and Records.

•	 Custom Data Types (CDTs): CDTs in Appian are akin to class
attributes in OOP. They bundle related data fields together
into a structured format, such as a “Person” CDT containing
fields like name, address, and contact number. This grouping
allows developers to organize and manage related data
more effectively, ensuring that the attributes are treated as a
single cohesive unit when passed through process models or
interfaces. CDTs also facilitate data encapsulation by enabling
the creation of reusable data structures that maintain
integrity across different parts of the application [2].

•	 Records: Records in Appian combine data and behaviour,
encapsulating both into a cohesive entity. They integrate data
(often derived from CDTs or external systems) with interfaces,
process models, and business logic, effectively mirroring how
OOP classes encapsulate attributes and methods. For example,
a “Customer Record” might bundle together a customer’s data
with processes related to order fulfilment, customer service
interactions, and interface displays. This encapsulation
ensures that users interact with a unified structure, while the
underlying data and processes remain secure and maintain
integrity [3]. Through this approach, Appian encapsulates
data and behaviour together, allowing developers to package
complex systems into manageable, reusable components
while controlling data access and ensuring that data
manipulation happens in controlled, structured ways.

Inheritance and Reusability

Traditional inheritance in OOP allows a subclass to inherit
properties and behaviors from a parent class, promoting code
reuse and extensibility. While Appian doesn’t support direct
inheritance in the same way, it provides powerful reusability
features that mimic OOP principles of inheritance:

•	 Interface Reuse: Appian allows developers to create base
interfaces, which act like parent classes in OOP. These
interfaces can be extended and customized for specific
use cases, reducing the need to recreate components from
scratch. For example, a base interface for a user profile can
be reused and extended to create specialized interfaces for
different user roles, such as administrators or customers. This
modular approach enhances maintainability and scalability
by leveraging reusable components.

•	 CDT Nesting: In Appian, you can nest one CDT inside another,
simulating “is-a” relationships commonly used in OOP
inheritance. For instance, if you have a “Person” CDT and an
“Employee” CDT, you can include the “Person” CDT as a field

Page 3/6

Citation: Preeti T (2024) Implementing Object-Oriented Programming Concepts in Low-Code Platforms A Case Study on Appian
Digit J Eng Sci Technol 1(1): 101.

Digital Journal of Engineering Science and Technology (DJEST)

within the “Employee” CDT, representing that an employee
“is a” person while still adding employee-specific fields.
This structure promotes the reuse of data definitions and
simplifies system updates, as changes to the base CDT (like
“Person”) automatically propagate to the nested CDT (like
“Employee”).

•	 Expression Rule Inheritance: Appian’s expression rules
function as reusable logic blocks, akin to methods in OOP.
Developers can write expression rules once and reuse them
across multiple components, simulating inheritance by
sharing common behaviors across different application areas.
This improves consistency and reduces code duplication,
ensuring that the same logic can be applied universally, and
any changes to the expression rule will be reflected across the
system.

Polymorphism

Polymorphism in OOP allows objects to be treated as
instances of their parent class, enabling the same operation to
behave differently depending on the specific object it is applied to.
Appian supports polymorphism-like behaviour through dynamic
interfaces and decision-making mechanisms that adapt based
on conditions.

•	 Dynamic Interfaces: Appian interfaces can dynamically
adapt based on input data or user roles. For example, an
interface might display different fields or options depending
on whether the user is an administrator or a customer. This
allows the interface to behave differently while maintaining
a unified structure, akin to method overriding in OOP, where
different classes implement a shared method in different
ways. Dynamic interfaces are crucial for building flexible,
role-based user experiences in enterprise applications.

•	 a!match() Function: Appian’s a!match() function operates
similarly to OOP method overriding, allowing developers to
implement different behaviours based on specific conditions.
For example, based on the input data type or value, the system
can decide which process or action to execute, mimicking how
different objects in OOP might override a parent class method
to achieve context-specific behaviour [2,3].

•	 Decision Tables: Decision tables in Appian provide
another form of polymorphism by configuring different
outcomes based on varying input conditions. Much like OOP
polymorphism allows different objects to respond to the same
method in different ways, decision tables can guide a process
to take different actions based on the provided inputs. This
ensures flexible, context-aware application behaviour.

Modular Design

Modular design is a cornerstone of OOP, and it is equally

emphasized in Appian’s architecture. Modular systems break
down complex software solutions into smaller, self-contained
units that can be developed, tested, and maintained independently.
Appian promotes modular design through several mechanisms:

•	 Reusable Interfaces: Appian allows developers to create
interface fragments, which are smaller reusable pieces of
a larger interface. These fragments can be composed into
bigger, more complex interfaces, ensuring that common
design elements and logic can be reused across multiple pages
or components. This modularity speeds up development and
simplifies long-term maintenance, as changes to a fragment
are reflected across all interfaces that use it [1].

•	 Expression Rules: Expression rules in Appian are modular
logic units that can be reused across various parts of an
application. These rules enable developers to define logic once
and call it from multiple interfaces, workflows, or process
models, promoting consistency and reducing duplication. For
example, a validation rule for email formatting can be written
once and reused anywhere an email address is required,
ensuring uniform validation throughout the application [2].

•	 Process Models: In Appian, complex workflows can be
broken down into smaller, reusable subprocess models.
These subprocess models are like OOP functions, designed to
handle specific tasks within a larger process. By reusing these
subprocesses, developers can build scalable, maintainable
workflows that can be easily modified or extended without
disrupting the entire system. This modular approach
ensures that workflows remain adaptable and efficient, even
as application complexity grows. By applying these OOP
concepts, you can create a more maintainable, scalable, and
efficient Appian development ecosystem. This approach
allows for faster development, consistent user experiences,
and easier long-term maintenance of your applications [7].

Benefit of Implementing Oop Principals in Low-Code
Platform

Enhanced Reusability: Utilizing Object-Oriented
Programming (OOP)-like structures such as reusable interfaces
and Complex Data Types (CDTs) can significantly enhance
reusability in low-code platforms. By defining standard interfaces
and reusable components, developers can avoid redundancy and
ensure consistency across various parts of the application. This
not only speeds up the development process but also minimizes
the likelihood of errors, as the same tested and proven component
is used multiple times [1].

Scalability: OOP-based designs are inherently modular,
which allows low-code applications to scale more effectively. As
businesses evolve and new features or modules are required,
these modular components can be extended or reused without
needing to rewrite existing code. This modularity supports the

Page 4/6

Citation: Preeti T (2024) Implementing Object-Oriented Programming Concepts in Low-Code Platforms A Case Study on Appian
Digit J Eng Sci Technol 1(1): 101.

Digital Journal of Engineering Science and Technology (DJEST)

application’s ability to grow alongside the business, ensuring it
can handle increased complexity and larger workloads efficiently
[6].

Maintainability and Reduced Technical Debt:
Encapsulation and modularity, core principles of OOP, help reduce
the interdependency of components within an application. This
makes it easier to maintain the system because changes in one
module don’t necessarily impact others. Developers can fix bugs
or add new features to specific parts of the application without
introducing issues elsewhere. This separation of concerns is
crucial for reducing technical debt, as it allows for smoother
updates and maintenance over time [6,7].

Improved Collaboration: Adopting OOP principles provides
a common design pattern that multiple developers can follow,
facilitating better collaboration on large projects. In a low-code
platform, adhering to principles like encapsulation, component
reuse, and modularity means that different team members
can work on various parts of the application simultaneously
without conflicts. This collaboration is further enhanced by clear,
well-defined interfaces and components that make it easier to
understand and extend the application [5].

Flexibility and Adaptability: OOP-like designs bring
flexibility to low-code applications by allowing developers
to build systems that can easily adapt to changing business
requirements. Polymorphism, seen in dynamic interfaces and
decision rules, enables the application to respond to different
inputs and scenarios without needing extensive rewrites. This
adaptability is critical in today’s fast-paced business environment
where requirements can change frequently.

Better Testing and Debugging: When application
components are encapsulated and modularized, it becomes
easier to isolate and test individual parts of the system. This
leads to more efficient and effective debugging, as developers can
focus on testing specific components independently. By isolating
modules, developers can identify and resolve issues more
quickly, enhancing overall application stability and reliability.
This modular testing approach also supports continuous
integration and delivery practices, ensuring that new changes
are thoroughly vetted before deployment [5]. By incorporating
these OOP principles within low-code environments, developers
can achieve greater efficiency, scalability, and maintainability,
while also fostering better collaboration and adaptability. These
benefits collectively contribute to building robust, flexible, and
high-performing applications that can grow and evolve with the
business.

Best Practices for Reusable Components in Appian

Parameterization Design components with rule inputs to
make them flexible and context independent. Parameterization
is a critical strategy for creating reusable components in Appian.

By designing components with rule inputs (parameters), you
allow for flexibility and adaptability, as these components can
be customized based on the context in which they are used. For
instance, an interface component designed to display a form
can accept different rule inputs for labels, fields, or validation
logic, enabling it to be reused across various scenarios without
needing modifications. This reduces duplication and enhances
reusability while maintaining a single, centralized source of
logic.

Best Practice: Ensure that components are built with a
clear understanding of which parameters need to be adjustable
and which should remain static. Define flexible rule inputs early
on to accommodate varying contexts without tightly coupling
components to specific use cases [2,3].

Data less Design: Create interfaces that are not tightly
coupled to specific data objects, allowing for greater
reusability. Data less design refers to the practice of separating
the structure and logic of your interfaces from the specific
data they manipulate. By designing interfaces that rely on
rule inputs or external data sources (rather than hardcoding
specific data objects), you can enhance their reusability. This
approach allows the same interface to be used across multiple
applications or scenarios by simply passing in the relevant data
at runtime, rather than binding the interface to specific objects.

Best Practice: Use rule inputs or query rules to feed data
into components rather than embedding static data objects.
This keeps components flexible, allowing them to handle
different types of data without requiring modifications to the
underlying structure.

Design Library: Utilize Appian’s Design Library to store
and share reusable interface components across applications.
Appian’s Design Library is a centralized repository where
reusable components—such as interface fragments, expression
rules, and process models—can be stored and shared across
applications. By leveraging this library, teams can access
pre-built components, ensuring consistency and reducing
development time. The Design Library also enables cross-
team collaboration by making reusable assets available to all
developers working on a project.

Best Practice: Regularly update the Design Library with
new components and ensure that each component is clearly
documented with usage instructions. Promote a culture of
sharing and collaboration among development teams to
maximize the value of reusable components.

Shared Components Application: Create a dedicated
application to house reusable components, making them easily
accessible across projects. A Shared Components Application is
a dedicated Appian application that stores common, reusable
components that can be accessed across various projects. This

Page 5/6

Citation: Preeti T (2024) Implementing Object-Oriented Programming Concepts in Low-Code Platforms A Case Study on Appian
Digit J Eng Sci Technol 1(1): 101.

Digital Journal of Engineering Science and Technology (DJEST)

approach enhances modularity by centralizing reusable assets
in a single location, making them easier to maintain, version,
and access. It also ensures that updates to these components
are propagated to all dependent projects without requiring
manual intervention.

Best Practice: Create a robust folder structure within
the Shared Components Application to organize components
logically by type (e.g., interfaces, expression rules, process
models). Use consistent naming conventions and include clear
documentation to make components easily discoverable and
understandable.

Composition Over Inheritance: Use composition to
build complex components from simpler ones, rather than
relying on API inheritance. Appian doesn’t support traditional
inheritance, so composition is a more effective way to build
complex components. Composition involves combining simpler,
reusable components to create more complex functionality.
For example, an interface may be composed of several smaller
interface fragments, each responsible for rendering different
aspects of the UI. This approach promotes modularity and
reusability, as individual components can be modified or
replaced without affecting the overall system.

Best Practice: When designing complex components, break
them down into smaller, reusable building blocks that can be
easily composed into larger structures. This enables greater
flexibility and allows for easier maintenance and updates to
individual components without impacting the entire system.

Clear Naming Conventions: Establish and follow naming
conventions for reusable components to enhance discoverability
and maintainability. Clear and consistent naming conventions
are essential for managing reusable components in Appian. A
well-defined naming convention ensures that components are
easily identifiable and understandable by all team members.
It also enhances maintainability by making it easier to locate
specific components when updates or bug fixes are required
[2].

Best Practice: Define a clear naming convention that
includes descriptive names for components, indicating their
purpose and usage. For example, use prefixes to denote the
type of component (e.g., int_ for interfaces, exp_ for expression
rules) and include information about the functionality (e.g.,
exp_CalculateTotalCost or int_UserProfileForm).

Documentation: Provide clear descriptions and usage
instructions for reusable components in the Design Library.
Documentation is crucial to ensure that reusable components
can be easily understood and implemented by other
developers. In Appian’s Design Library, each component should
be accompanied by clear descriptions that explain its purpose,
how it works, and how to use it. This ensures that components

are not only reusable but also easy to integrate into different
projects without requiring significant knowledge transfer [3].

Best Practice: For each reusable component, provide
documentation that includes details such as its parameters,
expected input/output, any dependencies, and example usage
scenarios. Keep documentation up to date to reflect any changes
in the component’s functionality.

Version Control: Implement proper change management
processes for reusable components to prevent unintended
impacts on dependent applications. As reusable components
are often used across multiple projects, changes to a component
can have wide-reaching effects. Implementing version control
for reusable components helps manage updates and prevents
unintended side effects. For example, changes to a shared
interface should be versioned so that dependent applications
can choose when (and if) to adopt the new version, ensuring
stability and preventing breaking changes [6].

Best Practice: When updating a reusable component, create
a new version rather than modifying the existing one. Document
changes clearly and ensure that all affected applications are
notified of the update. Consider using feature flags or toggles
to gradually roll out new versions of components in production
environments [7].

Conclusion

The implementation of Object-Oriented Programming (OOP)
principles in low-code platforms like Appian provides a powerful
approach to enhance the modularity, reusability, and scalability of
applications. While low-code environments typically lack native
support for traditional OOP features, this paper has shown how
core concepts such as encapsulation, inheritance, polymorphism,
and modularity can still be adapted to these platforms.

Encapsulation in Appian is effectively achieved through
the use of Custom Data Types (CDTs) and Records, allowing
developers to package data and behaviour into cohesive units
that maintain data integrity. Although traditional inheritance is
not available, Appian’s emphasis on reusability through features
like interface reuse, CDT nesting, and expression rule inheritance
offers a flexible alternative to build scalable systems. Furthermore,
polymorphism-like behaviour can be realized through dynamic
interfaces and decision-making functions, allowing applications
to adapt based on varying input conditions. Finally, Appian’s
architecture promotes modularity, enabling developers to create
complex workflows from smaller, reusable components, ensuring
that applications remain maintainable and adaptable over time
[4,6,7]. By adopting OOP-inspired design practices, developers
can take full advantage of low-code platforms’ rapid development
capabilities while still ensuring the long-term maintainability
and scalability of their applications. As businesses increasingly
turn to low-code platforms to streamline development processes,

Page 6/6

Citation: Preeti T (2024) Implementing Object-Oriented Programming Concepts in Low-Code Platforms A Case Study on Appian
Digit J Eng Sci Technol 1(1): 101.

Digital Journal of Engineering Science and Technology (DJEST)

these practices will be essential for building robust and efficient
systems that can grow with evolving business needs. The future
of low-code platforms lies in further refining these approaches,
making it easier to incorporate the benefits of traditional
software engineering into environments designed for rapid
application development. As low-code technologies advance, the
convergence of OOP principles and low-code methodologies will
play a pivotal role in shaping the next generation of enterprise
applications.

Conflicts	of	interest

None

Funding

None

References

1. Reuse Promotion, Appian Community, Accessed: Oct. 24,
2024.

2. Frequently Reused Appian Components, Appian Community,
Accessed: Oct. 24, 2024.

3. Unlocking Reusability with Appian’s Design Library, All About
Appian, Jul. 31, 2023.

4. G. Schlageter e (1988) OOPS - an object-oriented programming
system with integrated data management facility, in Proc.
Fourth Int. Conf. Data Eng, Los Angeles, CA, USA, pp 118-125.

5. Lethbridge TC (2021) Low-Code Is Often High-Code, So We
Must Design Low-Code Platforms to Enable Proper Software
Engineering. In: Margaria T, Steffen B. (eds) Leveraging
Applications of Formal Methods, Verification and Validation,
ISoLA 2021. Lecture Notes in Computer Science 13036: 202-
212.

6. Tisi M, Mottu JM, Kolovos DS, Lara JD, Guerra EM, et al. (2019)
Lowcomote: Training the Next Generation of Experts in
Scalable Low-Code Engineering Platforms. HAL open science.

7. Rokis K, Kirikova M (2022) Challenges of Low-Code/No-Code
Software Development: A Literature Review. BIR 2022 462:
3-17.

https://community.appian.com/success/w/guide/2971/reuse-promotion
https://community.appian.com/success/w/guide/2971/reuse-promotion
https://community.appian.com/success/w/guide/3058/frequently-reused-appian-components
https://community.appian.com/success/w/guide/3058/frequently-reused-appian-components
https://allaboutappian.wordpress.com/2023/07/31/unlocking-reusability-with-appians-design-library/
https://allaboutappian.wordpress.com/2023/07/31/unlocking-reusability-with-appians-design-library/
https://link.springer.com/chapter/10.1007/978-3-030-89159-6_14
https://link.springer.com/chapter/10.1007/978-3-030-89159-6_14
https://link.springer.com/chapter/10.1007/978-3-030-89159-6_14
https://link.springer.com/chapter/10.1007/978-3-030-89159-6_14
https://link.springer.com/chapter/10.1007/978-3-030-89159-6_14
https://link.springer.com/chapter/10.1007/978-3-030-89159-6_14
https://hal.science/hal-02363416v1
https://hal.science/hal-02363416v1
https://hal.science/hal-02363416v1
https://link.springer.com/chapter/10.1007/978-3-031-16947-2_1
https://link.springer.com/chapter/10.1007/978-3-031-16947-2_1
https://link.springer.com/chapter/10.1007/978-3-031-16947-2_1

	Title
	Introduction
	Polymorphism
	Modular Design
	Conclusion
	Conflicts of interest
	Funding
	References

